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 2 

Abstract 17 

Timely and accurate information on crop yield is critical to many applications within agriculture 18 

monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite 19 

imagery has always been a source of valuable information for yield forecasting and assessment at 20 

national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 21 

remote sensing satellites, it becomes possible to enable temporal resolution of an image every 3–5 22 

days, and therefore, to develop next generation agriculture products at higher spatial resolution (30 23 

m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping 24 

and winter wheat assessment at regional scale. For the former, we adapt a previously developed 25 

approach for Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m resolution that 26 

allows automatic mapping of winter crops taking into account knowledge on crop calendar and 27 

without ground truth data. For the latter, we use a generalized winter wheat yield model that is 28 

based on NDVI-peak estimation and MODIS data, and further downscaled to be applicable at 30 m 29 

resolution. We show that integration of Landsat-8 and Sentinel-2A has a positive impact both for 30 

winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat 31 

yield estimates can be reduced up to 1.8 times comparing to the single satellite usage. 32 

 33 
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1. Introduction 37 

Timely and accurate information on crop yields at global, national, and regional scales is 38 

extremely important for many applications [1]. At national/regional scale, it can be an input to local 39 

authorities to make decisions on food security issues or deciding on subsidies in case of extreme 40 

weather conditions such as droughts. At field scale, spatial variability of yields can help to obtain 41 

objective information, for example, for farmers to improve management practices and identify yield 42 

gaps [2], or for insurance companies to feed this information into insurance models [3, 4]. 43 

Owing to its coverage, temporal and spatial resolution, remote sensing images from space 44 

has always been a powerful tool to develop empirical models for predicting and assessing yields at 45 

regional and national scales [5, 6, 7, 8, 9, 10, 11], or assimilating biophysical parameters into crop 46 

growth models [12, 13, 14]. In particular, coarse resolution sensors, e.g. Moderate Resolution 47 

Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), 48 

SPOT-VEGETATION, thanks to its daily coverage and availability of historical datasets, have 49 

extensively been used for building empirical models for crop yield forecasting and assessment. 50 

These models connect satellite-derived features, for example vegetation indices (VIs) such as 51 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Vegetation 52 

Health Index (VHI) and/or biophysical parameters such as Leaf Area Index (LAI), Fraction of 53 

Photosynthetically Active Radiation (FPAR), with reference yield data. For example, Johnson 54 

(2016) [5] analyzed efficiency of multiple MODIS land products including NDVI, EVI, LAI, 55 

FPAR, and Gross Primary Production (GPP) to assess crop yield at county level in US for ten major 56 

agriculture commodities. He found positive correlations of vegetation products against yield for all 57 

crops, except rice, and that finer spatial resolution improved the correlations. López-Lozano et al. 58 

(2015) [6] investigated the use of the Fraction of Absorbed Photosynthetically Active Radiation 59 

(fAPAR) derived from SPOT-VEGETATION to assess crop yields (wheat, barley and maize) at 60 

province level in Europe. They found high correlations (R2>0.6) in water-stressed regions; however, 61 

lower correlations (R2<0.5) were observed for regions with high yields where water constraints are 62 
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less frequent. Salazar et al. (2007) applied AVHRR-derived VHI to estimate winter wheat yield in 63 

Kansas, US, and found high correlations with official statistics for 1982–2004 obtaining an error 64 

around 8%. In order to overcome some limitations of empirical models in terms of robustness, 65 

Becker-Reshef et al. (2010) [10] developed a generalized winter wheat yield forecasting model that 66 

was calibrated for one region (US) and successfully applied for another (Ukraine) to provide 67 

accuracy of less than 10% that is suitable for operational context. Adding meteorological data, in 68 

particular temperature, has usually had a positive effect on crop yield models reducing the error and 69 

improving timeliness [5, 6, 7]. Though these models are empirical and based on relative simple 70 

equations, they perform at the level or even better than more comprehensive crop growth models 71 

that are based on crop growth simulations [8, 15]. The reasons for that are: complexity of 72 

accounting multiple factors influencing the yield, lack of high-quality data required to calibrate and 73 

run such models, and difficulties of upscaling ‘point’ estimates to higher spatial scale [16]. 74 

Comparing to coarse resolution satellite imagery, the use of Landsat-like (30 m) data to crop 75 

yield forecasting and assessment has been limited mainly due to lower temporal resolution. 76 

Nevertheless, there were studies aiming at fusing Landsat with MODIS data [17, 18], and 77 

combining Landsat with biophysical models [19, 20]. However, these approaches showed mixed 78 

results in terms of errors and still had limitations constrained by lower frequency of moderate 79 

resolution images. With the combined use of Landsat-8 and Sentinel-2 remote sensing satellites that 80 

would enable acquisition of an image every 3–5 days globally, as well as development of cloud 81 

platforms such as Google Earth Engine (GEE) [20, 21, 22], it becomes possible to implement 82 

approaches similar to those used for MODIS/AVHRR to develop next generation agriculture 83 

products at higher spatial resolution (30 m). 84 

This paper presents one of the first studies to combine Landsat-8 and Sentinel-2A imagery 85 

for crop yield mapping by downscaling a generalized empirical model developed for MODIS data 86 

[7, 10]. The model is based on capturing the peak NDVI to correlate with the yield, and growing 87 

degree days (GDD) to improve the timeliness of the model. Therefore, the main objectives of the 88 
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study are: (i) to assess performance of downscaling a generalized NDVI-based empirical model for 89 

winter wheat yield forecasting from coarse spatial resolution to moderate one at 30 m; (ii) to 90 

explore the combined use of images acquired by Landsat-8 and Sentinel-2A remote sensing 91 

satellites for winter crop mapping and winter wheat yield assessment at regional level. 92 

 93 

2. Study area & materials 94 

2.1. Study area and reference data 95 

The study is performed for Kirohohradska oblast in Ukraine for 2016 (Fig. 1). Oblast is a 96 

high-level administrative division of the country (there are 24 oblasts in Ukraine and Autonomous 97 

Republic of Crimea), and each oblast is further divided into districts. Kirovhradska oblast is located 98 

in the central part of Ukraine and composed of 21 districts with geographical area ranging from 65 99 

to 165 thousand ha and cropland area ranging from 27 to 112 thousand ha. The reasons for selecting 100 

this region is that it is a top 10 wheat producer in Ukraine and because of availability of reference 101 

crop yield and harvested area data at district scale. Winter wheat is one of the major crops in 102 

Kirovhradska oblast accounting for 20% of production of all crops in the region. Winter wheat is 103 

mainly rain-fed in the region and usually planted in September-October. After dormancy during the 104 

winter, it emerges early spring reaching maturity by the end of June. Harvest of winter crops is 105 

typically undertaken in July. 106 

Reference data on crop yield and harvested area at district level were collected from the 107 

Department of Agro-Industry Development of Kirovohrad State Administration (http://apk.kr-108 

admin.gov.ua). The data were made available online as the harvest progressed and were based on 109 

farm surveys of all large agricultural enterprises (that account of more than 90% of all winter crops 110 

production in the region) and samples of household farms the same way as official statistics is 111 

collected [23]. The final estimates for winter crop yields and areas were available at the end of 112 

November and were used as reference in this study. 113 
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        114 

Fig. 1. A map of Ukraine with division into administrative regions (oblasts). The study area 115 

(Kirovohradska oblast) is highlighted on left figure and shown with division into district on right 116 

figure. 117 

 118 

2.2. Landsat-8/OLI and Sentinel-2A /MSI datasets 119 

Remote sensing images acquired by the Operational Land Imager (OLI) instrument aboard 120 

of Landsat-8 satellite and by the Multi-Spectral Instrument (MSI) aboard Sentinel-2A satellite were 121 

used in the study. Landsat-8/OLI captures images of the Earth’s surface in 9 spectral bands at 30 m 122 

spatial resolution (15 m for panchromatic band) [24] while Sentinel-2A/MSI captures images of the 123 

Earth’s surface in 13 spectral bands at 10 m, 20 m and 60 m spatial resolution [25]. Overall, 51 124 

Landsat-8 and 87 Sentinel-2A scenes were acquired over the study area from March 1, 2016 to July, 125 

31, 2016. Landsat-8 scenes covered the following coordinates (path/row) of the World-wide 126 

Reference System (WRS-2): 178/026, 179/026, 179/027, 180/026, 180/027, and 181/026. The 127 

swath of the Landsat-8 scene is approximately 185 km × 180 km. Sentinel-2A scenes covered the 128 

following tiles: 35UQQ, 35UQP, 36UUV, 36UUU, 36UVV, 36UVU, 36UWV, and 36UWU. The 129 

size of the Sentinle-2A tile is approximately 110 km × 110 km. 130 

The Landsat-8/OLI and Sentinel-2A/MSI scenes were atmospherically corrected for surface 131 

reflectance using the LaSRC algorithm [26] (Fig. 2) ensuring consistency between these datasets as 132 

well as with MODIS data used for building a generalized crop yield model [10, 28]. Cloud and 133 

shadow screening for Landsat-8 and Sentinel-2A scenes was performed using the Fmask algorithm 134 

[27] and inversion residuals from aerosol optical thickness (AOT) estimation [26] (Fig. 3). The 135 
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pixels identified as those with high aerosol content were also masked out. Images from Sentinel-136 

2A/MSI were further converted to 30 m to match spatial resolution of Landsat-8/OLI. Since 137 

atmospheric correction for Sentinel-2A was performed at 10 m spatial resolution for all spectral 138 

bands, conversion to 30 m was carried out by aggregation (averaging). 139 

It was found that Landsat-8/OLI and Sentinel-2A/MSI exhibit misregistration issues [29]; 140 

therefore additional co-registration was performed to ensure spatial consistency between the 141 

datasets [30]. Finally, NDVI was calculated for Landsat-8 scenes using band 5 (near-infra red — 142 

NIR) and band 4 (red), and for Sentinel-2A scenes using band 8A (NIR) and band 4 (red). 143 

 144 

 145 

Fig. 2. Examples of images acquired by Landsat-8 and Sentinel-2A satellites 1 day apart and 146 

atmospherically corrected using the LaSRC algorithm [26]. True colour images were composed of 147 

bands 4-3-2 for Landsat-8 and Sentinel-2A, and scaled from 0 to 0.15. False colour images were 148 

composed of bands 5-4-3 for Landsat-8 and 8A-4-3 for Sentinel-2A, and scaled from 0 to 0.3 for 149 

NIR, and 0 to 0.1 for red and green bands. 150 
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 151 

Fig. 3. Example of cloud and shadow detection for Sentinel-2A images 152 

 153 

3. Methodology 154 

Winter wheat yield mapping and assessment at regional scale consists of the two major 155 

steps: (i) winter crop mapping; (ii) yield assessment at 30 m spatial resolution. Fig. 4 illustrates all 156 

processing steps along with input datasets. These steps are described in detail in the following sub-157 

sections. 158 

 159 

Fig. 4. Algorithm flowchart. 160 
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 161 

3.1. Winter crop mapping  162 

For winter crop mapping, we adopted a previously developed approach for MODIS [31] that 163 

allows automatic mapping of winter crops using a priori knowledge on crop calendar and without 164 

using reference (ground truth) data. The method is based on per-pixel estimation of the peak NDVI 165 

(metric) during early spring (or early fall depending on hemisphere), when winter crops have 166 

developed biomass, while other crops (spring and summer) have no biomass in that time period. 167 

The calculated metric will have high NDVI values for winter crops and low NDVI values for other 168 

crops (Fig. 5). Then, the metric is modelled using a Gaussian mixture model (GMM) [32] to 169 

automatically discriminate different crop types (winter versus others). The GMM is a linear 170 

combination of Gaussian distributions that can model any continuous distribution: 171 

𝑝 𝐱 = 𝜋!𝑁 𝐱 𝜇! ,∑!!
!!! ,   (1) 172 

where each Gaussian density 𝑁 𝐱 𝜇! ,∑!  is called a component of the mixture and has its own 173 

mean 𝜇! and covariance ∑!; parameters 𝜋! are weight (mixing) coefficients with 𝜋!!
!!! = 1 174 

[32]. 175 

 176 

 177 

Fig. 5. Empirical distribution for the peak NDVI and fitted GMM model. The solid green line 178 

shows the fitted GMM distribution, while the dashed lines show the mixture model components. 179 

 180 
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Parameters of the GMM model are estimated using an expectation-maximization (EM) 181 

algorithm that is run for all pixels identified as cropland. In our study, we used a cropland layer 182 

acquired from the land cover map generated for Ukraine at 30 m spatial resolution [33]. The 183 

constraint to utilize cropland pixels only comes from potential confusion with grassland, hay, 184 

bulrush that might also have already developed biomass within indicated time period. The 185 

component with the largest mean in the obtained GMM model is considered to belong to the winter 186 

crop class (Fig. 5). Finally, the derived GMM model is applied to all cropland pixels, and a 187 

posteriori probability (Eq. 1) of the pixel belonging to the winter crop class is estimated in the final 188 

resulting map. Pixels with probability larger than 0.5 are considered as winter crops. 189 

 190 

3.2. Winter wheat yield mapping and assessment 191 

Peak NDVI estimated on a per-pixel basis from Landsat-8/OLI and Sentinel-2A/MSI images 192 

from March to June was selected as a primary parameter for assessing winter wheat yield. In 193 

multiple studies NDVI has been shown to be strongly correlated with yields for a variety of crop 194 

types [5, 8, 9, 10]. Since there are no available historical data for a combination of Landsat-8 and 195 

Sentinel-2A images to correlate with yield measurements and build a crop yield model at district 196 

scale, we used a MODIS-derived winter wheat yield model that was calibrated for US and directly 197 

applied for Ukraine [7, 10]. More specifically, the model takes advantage of daily MODIS data at 198 

Climate Modeling Grid (CMG) scale at 0.05° resolution to capture an NDVI peak and correlate 199 

with the yield. However, since proportion of winter wheat is variable within the CMG pixel, the 200 

model establishes a generalized relationship between the slope of NDVI against yield and pixel 201 

purity [10]: s=9.61–0.05*m, where m is the winter wheat proportion at CMG scale (from 0 to 202 

100%), and s is the slope such as yield=s*NDVI. 203 

In case of Landsat-8–Sentinel-2A images, we can assume that purity at 30 m level is 100%, 204 

i.e. m=100. Therefore, we obtain the slope of 4.61 to be applied to an NDVI peak calculated from 205 

the combination of Landsat-8 and Sentinel-2A data to map winter wheat yield at 30 m resolution. 206 
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Therefore, the MODIS-derived coarse resolution (0.05°) winter wheat yield model, that was 207 

calibrated for US [10], is downscaled using winter wheat purity as a proxy to derive the slope 208 

between the peak NDVI and yield. This slope (4.61) is directly applied to the peak NDVI calculated 209 

from Landsat-8–Sentinel-2A images to derive a winter wheat yield map at 30 m resolution. These 210 

are used to estimate district-level yields by averaging yields at 30 m over winter crop masks 211 

(section 3.1) for each district. In addition to the average, a standard deviation and coefficient of 212 

variation (CV), defined as a ratio between the standard deviation and the mean, is estimated as well. 213 

The estimated district-level yields are validated using independent reference data (section 2.1) 214 

collected at district level in Kirvohradska oblast in Ukraine. 215 

 216 

3.3. Validation metrics 217 

For comparison of satellite-derived winter crop areas and winter wheat yield with reference 218 

datasets at district level, we used the APU analysis metrics [28]: 219 

• accuracy (A) that shows the average bias of the estimates 220 

𝐴 =  !
!

𝑃! − 𝑂!!
!!! ,    (2) 221 

• precision (P) that shows repeatability of the estimates 222 

𝑃 =  !
!!!

𝑃! − 𝑂! − 𝐴 !!
!!! ,  (3) 223 

• uncertainty (U) that is the root mean squared error 224 

𝑈 =  !
!

𝑃! − 𝑂! !!
!!! ,   (4) 225 

• relative uncertainty (rU) normalized by an average of reference values: 226 

𝑟𝑈 % = !
!
! !!!

!!!
×100% ,   (5) 227 

where 𝑃! and 𝑂! are computed (from satellites) and observed (from reference) values, respectively. 228 

 229 

 230 
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4. Results & discussion 231 

4.1. Winter crop mapping 232 

The GMM approach to winter crop mapping was applied to the peak NDVI calculated for 233 

the time period from March 1 to April 6 using a combination of Landsat-8 and Sentinel-2A, as well 234 

as using each of them separately. This was done in order to assess an added value of the combined 235 

use of these datasets. The indicated period (March 1 to April 6) was selected in such a way to 236 

capture NDVI development of winter crops and avoid confusion with early spring cereals that were 237 

planted beginning of March. The derived maps were used to calculate the area of winter crops at 238 

districts level by pixel-counting. These estimates were compared to reference values and are 239 

presented in Table 1 and Fig. 6. The derived winter crop using Landsat-8 and Sentinel-2A is 240 

illustrated in Fig. 7.  241 

 242 

Table 1. Comparison of satellite-derived winter crop areas with official statistics on harvested areas 243 

at district level. Estimates of the APU metrics are given in ha. 244 

Metric LC8-S2A LC8 S2A 

A 612 1081 839 

P 1719 5061 1962 

U 1785 5056 2090 

rU, % 11.6 32.7 13.5 

R2 0.90 0.64 0.88 

 245 

 246 

 247 
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 248 

Fig. 6. Plots of official statistics on harvested winter crop areas against satellite-derived ones using 249 

a combination of Landsat-8 and Sentinel-2A (left), Landsat-8 only (centre), and Sentinel-2A only 250 

(right). 251 

 252 

 253 

Fig. 7. Final map of winter crops derived from Landsat-8 and Sentinel-2A images using the GMM 254 

approach for Kirohradska oblast in 2016. 255 

 256 

Combination of Landsat-8 and Sentinel-2A allowed us to achieve R2 = 0.9 and relative 257 

uncertainty of 11.6% when estimating winter crop areas at district level. It should be noted that 258 

these results were achieved in an automatic way utilizing knowledge on crop calendar and without 259 

utilizing any ground truth data. The use of Landsat-8 images only did not produce satisfactory 260 

results (R2 = 0.64 and relative uncertainty of 32.7%) because of unavailability of cloud-free images 261 

early spring especially in the eastern districts of the oblast whereas the use of Sentinel-2A yielded 262 
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R2 = 0.88 and relative uncertainty of 13.5%. Overall, these results demonstrate the benefits, in a 263 

quantitative way, of the combined use of Landsat-8 and Sentinel-2A satellites comparing to the 264 

single-satellite usage.  265 

 266 

4.2. Winter wheat yield mapping 267 

Results of comparison of the estimated winter wheat yields at district level are presented in 268 

Table 2 and Fig. 8.  269 

 270 

Table 2. Comparison of satellite-derived winter wheat yields with official statistics at district level. 271 

Estimates of the APU metrics are given in t/ha. 272 

Metric LC8-S2A LC8 S2A 

A -0.17 -0.48 -0.34 

P 0.26 0.31 0.32 

U 0.31 0.57 0.46 

rU, % 7.7 14.3 11.5 

R2 0.45 0.29 0.28 

 273 

 274 

Fig. 8. Plots of official statistics on winter wheat yield against satellite-derived ones using a 275 

combination of Landsat-8 and Sentinel-2A (left), Landsat-8 only (centre), and Sentinel-2A only 276 

(right). 277 

 278 
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As with winter crop areas, the combination of Landsat-8 and Sentinel-2A outperformed the 279 

single satellite usage. When using either Landsat-8 or Sentinel-2A, the peak NDVI approach 280 

underestimated official statistics by -0.48 t/ha and -0.34 t/ha, respectively, while their combination 281 

improved to -0.17 t/ha. In terms of uncertainty, the peak NDVI approach for the Landsat-8–282 

Sentinel-2A combination provided 0.31 t/ha (7.7%) whereas those values were 1.8 times higher for 283 

the Landsat-8 usage only (0.57 t/ha, 14.3%) and 1.5 times higher for the Sentinel-2A usage only 284 

(0.46 t/ha, 11.5%). These results clearly demonstrate the importance of higher observation 285 

frequency achieved with combination of Landsat-8 and Sentinel-2A satellites comparing to the 286 

single use. 287 

The results presented in Fig. 8 (left) were further analyzed for errors. Overall, the points can 288 

be divided into 3 groups. The first group is composed of 3 points representing districts with official 289 

statistics yields values close to 4 t/ha and underestimated by the peak NDVI approach. These 290 

districts feature relatively large values of CV of 21% whereas the average CV for all other districts 291 

is approximately 13%. The reason for that is smaller number of images available for these districts 292 

(mainly in the eastern part) which reduces ability to capture the peak NDVI. The second group is 293 

composed of districts with official statistics yields larger than 4 t/ha. The reason for that is 294 

saturation of NDVI occurs and the proposed approach fails to discriminate yield values at this level. 295 

Fig. 9 shows an example of NDVI time-series for the district with reference yield of 4.3 t/ha and 296 

estimated yield of 4.04±0.40 t/ha with NDVI quickly achieving the value of 0.8 on April 29 (day of 297 

the year (DOY) 120) and not changing considerably (within 0.8–0.9) during the following days 50 298 

days (until June 18 or DOY=170). The NDVI values start to decrease when the senescence phase 299 

occurs and the crop is eventually harvested. 300 
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 301 

Fig. 9. A combined Landsat-8–Sentinel-2A derived NDVI time-series of winter wheat for the 302 

district with reference yield at 4.3 t/ha. 303 

 304 

The third group involves 8 districts with moderate yield values of up to 4 t/ha. The proposed 305 

approach is able to explain variations in the winter wheat yield (R2=0.8) giving a bias of 0.1 t/ha 306 

and uncertainty of U=0.13 t/ha (3.5%). 307 

 308 

6. Conclusion 309 

This study attempted to explore the combined use of Landsat-8 and Sentinel-2A satellites to 310 

winter crop mapping and winter wheat yield assessment at regional level. For both tasks, the 311 

increased frequency of observations from the satellites was critical as it allowed us to achieve better 312 

performance comparing to the single satellite usage. For winter crop mapping, we adopted a 313 

previously developed approach for MODIS that allowed automatic winter crop mapping taking into 314 

account a priori knowledge on crop calendar without utilizing ground reference data. When 315 

comparing to official statistics on winter crop harvested areas, this approach gave R2=0.9 and 316 

relative error of 11.6%. These results are encouraging as with little data inputs (crop calendar and 317 

cropland mask) and high temporal resolution of Landsat-8–Sentinel-2A satellites, it would allow the 318 

creation of winter crop maps at global scale at 30 m resolution. 319 
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For winter wheat yield mapping, we downscaled the generalized empirical model that is 320 

based on peak NDVI and was developed using MODIS data, and directly applied it to the Landsat-321 

8–Sentinel-2A images. The model was efficient in explaining moderate yield values (<4 t/ha) with 322 

R2=0.8; however, it failed to capture the variance of high yield values (>4 t/ha) due to NDVI 323 

saturation. Overall, the downscaled peak NDVI approach with combined use of Landsat-8 and 324 

Sentinel-2A gave uncertainty of 0.31 t/ha (7.7%) and R2=0.45 substantially outperforming Landsat-325 

8 only (1.8 times) and Sentinel-2A only (1.5 times). 326 

 327 
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